

LIQUID ABSORPTION SAMPLING METHOD

使用例

Contents

- 1, Environmental regulations
- 2. Liquid absorption sampling method
- 3、Remarks
- 4. Advantages of Σ -series
- 5, Exercise

Environment Pollution

We must save ourselves and environment from pollution!

LI

10

Vietnamese Standard

Ar	nbient	air environmenta	al standards	(mg∕m³)	
		Hourly average	8 hrs average	Daily average	
Carbon monoxide	CO	40	10	5	
Nitrogen dioxide	NO2	0.4	-	0.1	
Sulfer dioxide	SO2	0.5	-	0.3	
Lead particle	Pb	-	-	0.005	
Ozone	O3	0.2	-	0.06	
Suspended particle	SS	0.3	-	0.2	

*Analyzing method is mentioned in Vietnamese standard(TCVN)

Standard value of factory exhaust gas

 (mg/m^3)

		Standards							
		Vietnam(TCV	N5939-1995)	lanan					
		A B		Japan					
	Particulate Organic Matter	400	200						
	Metallic furnace	400	200						
1	Asphalt factory	500	200	30-250					
	Cement factory	400	100						
	Other factory	600	400						
	Dust	100	50						
2	Silica component	100	50	_					
	Asbestos	none	none	-					
3	Antimony	40	25	-					
4	Arsenic	30	10	-					
5	Cadmium	20	1	1					
6	Lead	30	10	10,20,30					
7	Copper	150	20	-					
8	Zinc	150	30	-					
9	Chloride	250	20	-					
10	HCI	500	200	80,700					
11	Fluoride, HF(any source)	100	10	1-20					
12	H2S	6	2	-					
13	Copper	1500	500	-					
14	SO2	1500	500	K-factor regulation, total amount regulation, concentration					
15	Nox (any source)	2500	1000	120-1640					
16	NOx	4000	1000	120-1040					
17	H2SO4 (any source)	300	35	-					
18	HNO3	2000	70	-					
19	Ammonia	300	100	-					

1. Applied for existing facility

2, Applied for new facility

3, From Air Pollution Control Act

4. Depending on type and size of facility

Referential manual in Vietnam (Example)

Designation: D 1607 – 91 (Reapproved 2000)^{€1}

Standard Test Method for Nitrogen Dioxide Content of the Atmosphere (Griess-Saltzman Reaction)¹

This standard is issued under the fixed designation D 1607; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

ε¹ Note-Editorial corrections were made throughout in September 2000.

1. Scope

1.1 This test method² covers the manual determination of nitrogen dioxide (NO₂) in the atmosphere in the range from 4 to 10 000 μ g/m³ (0.002 to 5 ppm(v)) when sampling is conducted in fritted-tip bubblers.

1.2 For concentrations of NO_2 in excess of 10 mg/m³ (5 ppm(v)), as occur in industrial atmospheres, gas burner stacks, or automotive exhaust, or for samples relatively high in sulfur dioxide content, other methods should be applied. See for example Test Method D 1608.

1.3 The maximum sampling period is 60 min at a flow rate of 0.4 L/min.

1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

- D 1357 Practice for Planning the Sampling of the Ambient Atmosphere⁵
- D 1608 Test Method for Oxides of Nitrogen in Gaseous Combustion Products (Phenol-Disulfonic Acid Procedure)⁵
- D 3195 Practice for Rotameter Calibration⁵
- D 3609 Practice for Calibration Techniques Using Permeation Tubes⁵
- D 3631 Test Methods for Measuring Surface Atmospheric Pressure⁵
- E 1 Specification for ASTM Thermometers⁶
- E 128 Test Method for Maximum Pore Diameter and Permeability of Rigid Porous Filters for Laboratory Use⁷
- 3. Terminology

Japanese air environment standard(Extract)

Environmental standards regarding ambient air pollution

Subject		Regulations			
Sulfur dioxide	SO2	Hourly value of daily average must be under 0.04ppm,			
		and its hourly value must be under 0.1ppm(48.5.16)			
Carbon monoxide	<u> </u>	Hourly value of daily average must be under 10ppm,			
Carbon monoxide	00	and its hourly value of 8 hours average must be under 20ppm(48.5.8)			
Suspended particle matter	SPM	Hourly value of daily average must be under 0.10ppm,			
Suspended particle matter		and its hourly value must be under 0.20ppm(48.5.8)			
Nitrogen dioxide	NO2	Hourly value of daily average must be under or between 0.04ppm			
Nillogen dioxide	NUZ	and 0.06ppm(53.7.11)			
Photochemical oxidant	OX	Hourly value of daily average must be under 0.06ppm(48.5.8)			

Examples of environmental regulations in Japan

Subject	Law	Standard			
Ambient air environment	Air Pollution Control Act	Standard regarding air pollution			
Work environment	Industrial Safety and Health Act	Working environment evaluation standard			
WORK environment	Outdoor Work Area Guideline	Working environment evaluation standard			
	Guideline for Indoor Air Contamination	Guideline values for indoor air concentration			
	Puilding Maintenance Regulation	The management standard of environmental			
Indoor environment		sanitation for buildings			
Indoor environment	Regulation for Ensuring the Quality of Public Works	Comprehensive Assessment System for			
	Regulation for Ensuring the Quality of Public Works	Building Environmental Efficiency			
	School Health Act	Standard for School Environment and Hygiene			
Odor	Offensive Odor Control Act	Regulatory Standard of Offensive Odor			
Water quality	Water Quality Pollution Control Act	Standard regarding health protection			
Soil	Soil Contamination Countermeasures Act	Standard regarding soil contamination			

practiced in Japan

	Sampling subject	Measurement manual	Measuring method
	SO2		
	СО	Manual for regular	
Ambient air	SPM	monitoring system of air	Automatic measurement
nollution	NO2	pollution	
policitori	OX		
	Hazardous air	Hazardous air pollutant	
	pollutant	measurement manual	
	Dust		
Work	VOC	Guidebook for working	 Filtration sampling method
environment	Metal	environment	 Direct samling method
environment	Particular	measurement	 Solid absorption sampling
	chemicals		method
	VOC	Guidebook for working	 Liquid absorption sampling
Indoor	Aldehyde	environment	method
environment	Phthalic	measurement	
	Agrichemical		
All	All	Sanitation testing	

Sampling method

➢ Filtration sampling method 【Dust, , Asbestos, Metal····etc】

• Sample particulate and solid matter on the filter

Liquid absorption sampling method
 [Chemical agent, VOC, metal, odor ···]
 Let the air touch the solution, then sample subject from resolution and reaction

Solid absorption sample

[Chemical agent, VOC, metal · · ·]

• Sample the air to the gas tube

Direct sampling method [Chemical agent, VOC···]

• Sample the air directly to the container

Solid

Example of measuring method for liquid absorption sampling Sampling of sulfur dioxide (SO2) (sanitation testing)

Absorbing reager	nt triethanolamine + sodium azide solution
Volume	20ml/min
Absorber	SPC impinger(For sanitation testing regulation)
Glass container	Approx. 200ml
Flow rate	0.3∼3L/min

Remarks

- Reagent must be added to keep the same quantity if it has been evaporated during sampling
- There are limitations for reagent quantity and the amount of
 - the air to be sampled

Connection flow described in ASTM

Remarks

 Evaporation of Solution
 Absorbing solution has its absorption limit
 Effect of absorbing quantity & absorbing speed
 Importance of flow connection

Evaporation of Absorbing solution

Absorbing solution has its *absorption limit*

Effect of absorbing quantity & absorbing speed

Importance of flow connection

INVESTIGATION CONTRACTORS

Sampling with impingers

When the connection is not done correctly, pump sucks the solution .

And this will damage your pump. Check the correct way of connection as below.

* From instruction manual

Importance of pump protection

For mini pump Σ -series, high accuracy thermal mass flow sensor detects flow rate .

Flow rate accuracy is very high, and suitable for environmental measuring since it can automatically calculate flow rate at $20^{\circ}C/25^{\circ}C$ and 1 atmosphere.

However, it is precision equipment, therefore the moisture and corrosive gas should be avoided.

MP- Σ structure

Protecting pump from moisture

Proper pump protection depending on the type of measurement

Proper pump protection depending on the type of measurement

Remarks for pump protection

How to catches overflow of solution? Empty buffer tank is needed. Does solution vaporize ? Proper protection depending on the type of gas is needed. What if the sampling subject is corrosive? Proper protection needed in case solution breaks through Are flow rate and solution quantity proper? Proper type and shape of absorbing container should be used. Proper adjustment of flow rate, quantity of absorbing solution, and measuring time is important. Proper flow connection Right flow connection is important. Are these protection really working? You need to be careful of breaking through of gas tube for protection.

Solution capacity and flow rate for Sibata products

Product	Capacity	Solution Qty.	Flow rate
Impinger for dust	275ml	75ml	30L/min
SPC midget impinger for dust	30ml	5ml	3L/min
SPC midget impinger for gas	30ml	10ml	1L/min
Miniature bubbler	6ml	3ml	0.1L/min
Bubbler	30ml	20ml	1L/min
Miniature Gas Absorber	8ml	5ml	0.1L/min
SPC impinger(for sanitation testing)	Approx. 200ml	20ml	0.3~3L/min
SPC impinger(bubbler for sanitation testing)	Approx. 50ml	20ml	1L/min

(XUsage examples of Sibata products)

Advantages of Σ -series

- Compact size light
- High accuracy
- Digital display of instant flow rate
- Digital display of integrated flow volume
- Automatic correction of temperature
- and pressure
- Timer function

Sampling method

Temperature pressure correction

12.1 *Air Volume*—Convert the volume of air sampled to the volume at standard conditions of 25° C and 101.3 kPA (1 atm), as follows:

$$V_R = [V \times P/101.3] \times [298.15/T]$$
(1)

where:

 V_R = volume of air sampled at standard conditions, L V = volume of air sampled at ambient conditions, L P = average ambient atmospheric pressure, kPa T = average ambient atmospheric temperature, K 101.3 = pressure of standard atmosphere, kPa, and 290.15 = temperature of standard atmosphere, K.

Concentration is calculated with the air volume converted at 25°C and 1 atmosphere for ASTM D1607.

Flow rate of Σ -series are automatically calculated at 25°C and 1 atmosphere.

Features of ΣN -series

> Pump's performance remains the same

- Fixed flow rate range(suction flow rate & pressure) remains the same.
- <code>%Only for Σ 30, flow rate range changed from 0.05L/min to 0.1L/min. (The reason is that flow rate doesn't stay stable at 0.05L/min)</code>
- > It has constant flow rate function and flow rate accuracy is $\pm 5\%$.
- Flow rate can be corrected at both 20°C and 1atmosphere, 25°C and 1atmosphere.
- Lithium-ion battery is used.
 - Continuous operation time is double of old model.
- Easier handling
 - Power switch has changed to siding switch type
 - Filter element can been seen and checked from outside

$MP-\Sigma N$ Series

$MP-\Sigma N$ Series

2007

Filter Check Window

Check the time to change to new filter or water leakage

カバー内部

USB

connector

For communication software(option)

Power

source

connector

For connecting battery charger or AC adapter

Tripod Mounting Hole

Hook

Changing battery is possible with the pump attached to tripod taking off and on

One touch

Slide Lock For taking off battery unit Improved flow rate controlling system

- No sharp increase of flow rate at the beginning
- Saving time until it gets stable at setting flow
 rate
 Flow rate comparison graph

What can we do with

<u>communication</u> software(option)?

 $\bigcirc 1$ Cycle timer setting

2 Measuring data

3 Automatic calibration by bubble film flowmeter

R Communication soft	ware for MP-ΣN		×
Main menu			
Cycle timer mode setting	Calibration	Communication port setting	
Download measuring data	Download measuring data Measure		SIBATA
		End	
Pump status			
Model MP-∑300N	Flow rate setting range	0.50 - 3.00 L/min	Pump 2010/03/31 13:09 Adjust
Version 1.21	Volume setting range	.00 - 9999.90 L	System 2010/03/31 <wed> 13:08</wed>
Irregular stop (flow rate) On	Total operating time	OHO M	Devenload pump status

1. Cycle timer function

- \geq Programming possible up to 5 times
- Flow rate, starting time, and finishing condition are programmable
- Measuring starts from cycle timer mode after setting(condition can be checked from pump as well)

C	Cycle timer mode setting														
Model ■P-∑300N OK Cycle number System clock It does not stop Set current time OK										OK Cancel					
It does not stop Set current time 2010/03/31 <wed> 13:28 □ because of an abnormal flow rate.</wed>															
[Start				End							Set flow	
	Cycle	Year/Month/Day		Hour/N	our/Minute At-end condition		Year/Month/Day		Hour/I	Minute	Volume	Sampling	time	rate	
	1	2010/03/31	-	13:43	-	E_MD	-	2010/03/31	÷	13:45	÷	0.50			2.00
	2	2010/03/31	<u>+</u>	13:47	<u>+</u>	SA_T	-	2010/03/31		13:37	- A-	0.50	0	1_	0.50
	3	2010/03/31	+	13:50	<u> </u>	PTOT	-	2010/03/31	- A-	13:37	- A-	5.00		1	1.00
	4	2010/03/31		13:37	- A-	E_MD	-	2010/03/31		13:37	- A-	0.50		1	1.75
[5	2010/03/31	- A. - T	13:37	- A- 	E_MD	-	2010/03/31	* *	13:37	* *	0.50 <u>-</u>		1	1.75

2. Measuring data

> 99 data can be recorded(Pump itself can record 10data)

Data can be saved as excel file

M	eas	ur in	g data - Previous I	og data							X
	Moc -Loe	lel s dat.	WP-∑300N					Cot roo		Back	
		og da No.	sta number 11	End time	Operation mode	Set flow rate [L/min]	Integrated flow volume [L]	Average flow rate [L/min]	Sampling time [H:M]	Error	
	0	1	2010/03/31 16:08	2010/03/31 16:13	DT	2.50	12.4	2.49	000:05	None	
		2	2010/03/31 16:01	2010/03/31 16:08	MA	2.00	13.4	1.99	000:06	None	
		3	2010/03/31 16:00	2010/03/31 16:01	MA	1.00	0.9	0.97	000:01	None	
		4	2010/03/31 15:59	2010/03/31 15:59	VT	2.00	0.3	1.63	000:00	None	
		5	2010/03/31 15:51	2010/03/31 15:56	DT	1.00	4.9	1.00	000:05	None	
		6	2010/03/31 13:50	2010/03/31 13:55	CY	1.00	5.0	1.00	000:05	None	
		7	2010/03/31 13:47	2010/03/31 13:48	CY	0.50	0.4	0.49	000:01	None	
		8	2010/03/31 13:43	2010/03/31 13:45	UY WY	2.00	3.9	1.97	000:02	None	
		,9	2010/03/10 1/:15	2010/03/10 17:15	MA	1.00	0.0	0.56	000:00	None	
		10	2000/01/01 00:01	2000/01/01 00:01	TLA M A	0.10	0.0	0.00	000:00	None	
		11	2000/01/01 00:00	2000/01/01 00:01	ΠΑ	0.10	0.0	0.09	000:00	140116	
											~

3. Automatic calibration by bubble film flowmeter

- > Automatic calibration and flow rate checking by MP Σ N × BF-200/-600
 - Temperature, pressure automatic calibration, for one-point calibration

Composition•Bubble film flowmeter BF-200, BF-600•Mini pump MP- Σ N series1.PC2.Communication software 1)3.Absorbing tube(pressure at use) 2)4.Connection tube5.USB cable(2 pcs.) 1)1)Communication software for MP- Σ N series(option)2)Using without pressure is possible.

*Illustrations may be different from the actual instruments. The connection is just an example.

We provide variety of instruments for sampling!

VOC gas tube for solid absorption sampling method

Charcoal tube

Product	Infill	Fill ration (Upper/ Lower mg)	Supelco equivalent product
Charcoal tube, standard	coconut husk activated carbon	100/50	ORBO 32 small
Charcoal tube, jumbo	coconut husk activated carbon	400/200	ORBO 32 large

Silica-gel tube

Product	Infill	Fill ration (Upper/ Lower mg)	Supelco equivalent product	
Silica-gel tube, standard	Silica-gel	520/260	ORBO 507	
Silica-gel tube, small	Silica-gel	150/75	ORBO 52 small	

Exercise

